摘要翻译:
Smith和Van den Bergh引入了有限F-表示型的概念,作为有限表示型概念的特征$P$类似物。本文证明了有限F-表示型环的两个有限性质。第一个性质是:如果$R=\bigoplus_{n\ge0}R_n$是具有有限(分次)F-表示型的Noetherian分次环,则对于R$中的每个非零除数$x\,$R_x$由$1/x$生成为$D_{R}$-模。第二个结论是:如果$R$是具有有限F-表示型的Gorenstein环,那么对于任何理想的$I$和任何整数$N$,$H_i^n(R)$只有有限多个相关素数。我们还包括关于有限(分次)F-表示型环的理想的F-跳跃指数离散性的一个结果作为附录。
---
英文标题:
《D-modules over rings with finite F-representation type》
---
作者:
Shunsuke Takagi and Ryo Takahashi
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Smith and Van den Bergh introduced the notion of finite F-representation type as a characteristic $p$ analogue of the notion of finite representation type. In this paper, we prove two finiteness properties of rings with finite F-representation type. The first property states that if $R=\bigoplus_{n \ge 0}R_n$ is a Noetherian graded ring with finite (graded) F-representation type, then for every non-zerodivisor $x \in R$, $R_x$ is generated by $1/x$ as a $D_{R}$-module. The second one states that if $R$ is a Gorenstein ring with finite F-representation type, then $H_I^n(R)$ has only finitely many associated primes for any ideal $I$ of $R$ and any integer $n$. We also include a result on the discreteness of F-jumping exponents of ideals of rings with finite (graded) F-representation type as an appendix.
---
PDF链接:
https://arxiv.org/pdf/0706.3842