摘要翻译:
一类神经过程(Freeman K-集)的实验观察数据呈现出再现贝塞尔功能行为的功能分布。我们用阻尼/放大振子偶来模拟这类过程,这些振子偶提供了贝塞尔方程的时间相关表示。极点和零点的根轨迹符合K-集的解。填补细胞水平动力学和大脑功能活动之间的空白的问题得到了一些启示。时间反转对称性的破坏与大脑皮层的热力学特征有关。这提供了一种可能的机制来推断记录存储器的生存期。
---
英文标题:
《Bessel Functions in Mass Action. Modeling of Memories and Remembrances》
---
作者:
Walter J. Freeman, Antonio Capolupo, Robert Kozma, Andres Olivares del
Campo, Giuseppe Vitiello
---
最新提交年份:
2015
---
分类信息:
一级分类:Quantitative Biology 数量生物学
二级分类:Other Quantitative Biology 其他定量生物学
分类描述:Work in quantitative biology that does not fit into the other q-bio classifications
不适合其他q-bio分类的定量生物学工作
--
---
英文摘要:
Data from experimental observations of a class of neurological processes (Freeman K-sets) present functional distribution reproducing Bessel function behavior. We model such processes with couples of damped/amplified oscillators which provide time dependent representation of Bessel equation. The root loci of poles and zeros conform to solutions of K-sets. Some light is shed on the problem of filling the gap between the cellular level dynamics and the brain functional activity. Breakdown of time-reversal symmetry is related with the cortex thermodynamic features. This provides a possible mechanism to deduce lifetime of recorded memory.
---
PDF链接:
https://arxiv.org/pdf/1506.04393