全部版块 我的主页
论坛 经济学人 二区 外文文献专区
300 0
2022-03-04
摘要翻译:
考虑一个0-1观测矩阵M,其中行对应实体,列对应信号;M的单元(i,j)中的值1(或0)表示在实体i中已经观察到(或未观察到)信号j。给出这样一个矩阵,我们研究如何推断实体(行)之间潜在的有向链接,并找出矩阵中哪些条目是发起者。我们正式定义了这个问题,并给出了一个MCMC框架来估计链路和发起者,给出了观测矩阵M。我们还说明了如何将这个框架扩展到包含时间方面;我们不再考虑单个观测矩阵M,而是考虑随时间变化的观测矩阵序列M1,…,Mt。我们展示了我们的问题与社会网络分析领域研究的几个问题之间的联系。我们将该方法应用于古生物和生态数据,表明我们的算法在实践中是有效的,并给出了合理的结果。
---
英文标题:
《Finding links and initiators: a graph reconstruction problem》
---
作者:
Heikki Mannila and Evimaria Terzi
---
最新提交年份:
2008
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Databases        数据库
分类描述:Covers database management, datamining, and data processing. Roughly includes material in ACM Subject Classes E.2, E.5, H.0, H.2, and J.1.
涵盖数据库管理、数据挖掘和数据处理。大致包括ACM学科类E.2、E.5、H.0、H.2和J.1中的材料。
--
一级分类:Physics        物理学
二级分类:Physics and Society        物理学与社会
分类描述:Structure, dynamics and collective behavior of societies and groups (human or otherwise). Quantitative analysis of social networks and other complex networks. Physics and engineering of infrastructure and systems of broad societal impact (e.g., energy grids, transportation networks).
社会和团体(人类或其他)的结构、动态和集体行为。社会网络和其他复杂网络的定量分析。具有广泛社会影响的基础设施和系统(如能源网、运输网络)的物理和工程。
--

---
英文摘要:
  Consider a 0-1 observation matrix M, where rows correspond to entities and columns correspond to signals; a value of 1 (or 0) in cell (i,j) of M indicates that signal j has been observed (or not observed) in entity i. Given such a matrix we study the problem of inferring the underlying directed links between entities (rows) and finding which entries in the matrix are initiators.   We formally define this problem and propose an MCMC framework for estimating the links and the initiators given the matrix of observations M. We also show how this framework can be extended to incorporate a temporal aspect; instead of considering a single observation matrix M we consider a sequence of observation matrices M1,..., Mt over time.   We show the connection between our problem and several problems studied in the field of social-network analysis. We apply our method to paleontological and ecological data and show that our algorithms work well in practice and give reasonable results.
---
PDF链接:
https://arxiv.org/pdf/0809.3027
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群