摘要翻译:
我们确定了F_q-有理点群的阶可被Q^2整除的F_q上阿贝尔曲面的等同类。对于genus-2曲线的Jacobian,我们也解决了同样的问题。
---
英文标题:
《p^k-torsion of genus two curves over F_{p^m}》
---
作者:
Michael E. Zieve
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
---
英文摘要:
We determine the isogeny classes of abelian surfaces over F_q whose group of F_q-rational points has order divisible by q^2. We also solve the same problem for Jacobians of genus-2 curves.
---
PDF链接:
https://arxiv.org/pdf/0705.3932