摘要翻译:
我们证明了Drinfeld半空间本质上是有限域上唯一的Deligne-Lusztig类,它同时是一个周期域。这是通过比较Digne、Michel和Rouquier给出的关于DL-变体的上同调消失定理和第一作者给出的关于PD的非消失定理来完成的。我们还讨论了DL-变体的一个相似判据。
---
英文标题:
《Deligne-Lusztig varieties and period domains over finite fields》
---
作者:
S. Orlik, M. Rapoport
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Representation Theory 表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
---
英文摘要:
We prove that the Drinfeld halfspace is essentially the only Deligne-Lusztig variety which is at the same time a period domain over a finite field. This is done by comparing a cohomology vanishing theorem for DL-varieties, due to Digne, Michel, and Rouquier, with a non-vanishing theorem for PD, due to the first author. We also discuss an affineness criterion for DL-varieties.
---
PDF链接:
https://arxiv.org/pdf/0705.1646