摘要翻译:
我们研究了Sheremet、Tishkovsky、Wolter和Zakharyaschev引入的比较概念相似性的逻辑,以获得定性相似性比较的一种形式。在这种逻辑中,我们可以提出“对象A更类似于B而不是C”这种形式的断言。该逻辑的语义是由评价对象相似度的距离函数所配置的结构定义的。我们在这里考虑\emph{minspaces}引起的语义的特殊情况,后者是距离空间,其中距离集的最小值总是存在的。结果表明,任意minspaces上的语义可以用优先结构等价地指定,这是条件逻辑的典型。我们首先在MinSpaces上给出了这个逻辑的直接公理化。我们接下来定义了一个表格演算形式的决策过程。微积分和公理化都利用了优先结构对语义的重新表述。
---
英文标题:
《Comparative concept similarity over Minspaces: Axiomatisation and
  Tableaux Calculus》
---
作者:
R\'egis Alenda (LSIS), Nicola Olivetti (LSIS), Camilla Schwind (LIF)
---
最新提交年份:
2009
---
分类信息:
一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
  We study the logic of comparative concept similarity $\CSL$ introduced by Sheremet, Tishkovsky, Wolter and Zakharyaschev to capture a form of qualitative similarity comparison. In this logic we can formulate assertions of the form " objects A are more similar to B than to C". The semantics of this logic is defined by structures equipped by distance functions evaluating the similarity degree of objects. We consider here the particular case of the semantics induced by \emph{minspaces}, the latter being distance spaces where the minimum of a set of distances always exists. It turns out that the semantics over arbitrary minspaces can be equivalently specified in terms of preferential structures, typical of conditional logics. We first give a direct axiomatisation of this logic over Minspaces. We next define a decision procedure in the form of a tableaux calculus. Both the calculus and the axiomatisation take advantage of the reformulation of the semantics in terms of preferential structures. 
---
PDF链接:
https://arxiv.org/pdf/0902.0899