摘要翻译:
我在上一篇论文中指出,有一些环的实闭包*不是唯一的。在文[4]中,我们还讨论了存在唯一实闭包*的环的一些例子(主要是实闭环)。现在我们要确定更多的环类,其中实闭包*是唯一的。主要结果包括具有唯一实闭包*的区域和Baer正则环的刻划,以及正则环不必是F-环才能具有唯一实闭包*的一个例子。这里的主要目的是寻找实正则环的实闭包唯一性的刻画,它主要只需要环的素谱和实谱的信息。
---
英文标题:
《Uniqueness of real closure * of Baer regular rings》
---
作者:
Jose Capco
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics        数学
二级分类:Commutative Algebra        交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
  It was pointed out in my last paper that there are rings whose real closure * are not unique. In [4] we also discussed some example of rings by which there is a unique real closure * (mainly the real closed rings). Now we want to determine more classes of rings by which real closure * is unique. The main results involve characterisations of domains and Baer regular rings having unique real closure *, and an example showing that regular rings need not be f-rings in order to have a unique real closure *. The main objective here is to find characterisation for uniqueness of real closure * for real regular rings that will primarily only require information of the prime spectrum and the real spectrum of the ring. 
---
PDF链接:
https://arxiv.org/pdf/0710.0267