摘要翻译:
Gotzmann的持久性指出,通过将任意理想的增长与词典理想的增长进行比较,可以控制任意理想的增长。例如,这种方法被用来寻找这样的方程,即在一个适当的格拉斯曼年中截断希尔伯特格式(由具有固定希尔伯特多项式的$\mathbf{P}^n$的子格式组成)。我们引入了{it极值理想}的概念,它将lex理想的概念推广到其他项序。然后,我们陈述并证明了关于这些理想的Gotzmann定理的一个版本,它在Grassmanian的一个开子集中是有效的。
---
英文标题:
《A local version of Gotzmann's Persistence》
---
作者:
Morgan Sherman
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Gotzmann's Persistence states that the growth of an arbitrary ideal can be controlled by comparing it to the growth of the lexicographic ideal. This is used, for instance, in finding equations which cut out the Hilbert scheme (of subschemes of $\mathbf{P}^n$ with fixed Hilbert polynomial) sitting inside an appropriate Grassmannian. We introduce the notion of an {\it extremal ideal} which extends the notion of the lex ideal to other term orders. We then state and prove a version of Gotzmann's theorem for these ideals, valid in an open subset of a Grassmannian.
---
PDF链接:
https://arxiv.org/pdf/0710.0186