摘要翻译:
我们为格子Boltzmann方法(LBM)构造了一个非平衡熵限制子系统。这些限制器消除杂散振荡而不使冲击模糊,也不影响光滑解。一般来说,它们在LBM中所做的工作与通量限制器在有限差分、有限体积和有限元方法中所做的工作相同,但对于LBM来说,构造非平衡熵限制器格式背后的主要思想是转换一个标量--非平衡熵的场。限制器有两大类:(一)基于非平衡熵的限制(熵“修剪”)和(二)基于非平衡熵的滤波(熵滤波)。LBM的物理特性提供了一些额外的好处:熵产生的控制和引入的人工耗散的准确估计是可能的。在经典的数值算例上对所构造的限制器进行了测试:初始密度比为1:2的一维非热激波管和雷诺数Re在2000~7500之间的二维盖驱动腔,在粗糙的100×100网格上。所有限制子结构都适用于熵准平衡和非熵准平衡。
---
英文标题:
《Nonequilibrium entropy limiters in lattice Boltzmann methods》
---
作者:
R.A. Brownlee, A.N. Gorban, J. Levesley
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Materials Science 材料科学
分类描述:Techniques, synthesis, characterization, structure. Structural phase transitions, mechanical properties, phonons. Defects, adsorbates, interfaces
技术,合成,表征,结构。结构相变,力学性质,声子。缺陷,吸附质,界面
--
---
英文摘要:
We construct a system of nonequilibrium entropy limiters for the lattice Boltzmann methods (LBM). These limiters erase spurious oscillations without blurring of shocks, and do not affect smooth solutions. In general, they do the same work for LBM as flux limiters do for finite differences, finite volumes and finite elements methods, but for LBM the main idea behind the construction of nonequilibrium entropy limiter schemes is to transform a field of a scalar quantity - nonequilibrium entropy. There are two families of limiters: (i) based on restriction of nonequilibrium entropy (entropy "trimming") and (ii) based on filtering of nonequilibrium entropy (entropy filtering). The physical properties of LBM provide some additional benefits: the control of entropy production and accurate estimate of introduced artificial dissipation are possible. The constructed limiters are tested on classical numerical examples: 1D athermal shock tubes with an initial density ratio 1:2 and the 2D lid-driven cavity for Reynolds numbers Re between 2000 and 7500 on a coarse 100*100 grid. All limiter constructions are applicable for both entropic and non-entropic quasiequilibria.
---
PDF链接:
https://arxiv.org/pdf/704.0043