摘要翻译:
目前的结构化预测统计模型对底层输出图结构做了简化假设,如假设低阶马尔可夫链,因为随着底层图树宽的增加,精确的推断变得困难。另一方面,近似推理算法迫使人们在表示能力和计算效率之间进行权衡。本文提出了两种新的用于结构化预测的概率图形模型:大边界玻尔兹曼机和大边界乙状信度网络。特别是LMSBNs允许在多项式时间内以高概率运行的任意图结构的非常快速的推理算法。这种概率依赖于数据分布,并在学习中得到最大化。该方法克服了以往模型中表示效率的折衷,并允许对复杂的图结构进行快速结构化预测。我们给出了将一个全连通模型应用于多标记场景分类的结果,并证明了所提出的方法比当前最先进的方法具有显著的性能增益。
---
英文标题:
《Large Margin Boltzmann Machines and Large Margin Sigmoid Belief Networks》
---
作者:
Xu Miao, Rajesh P.N. Rao
---
最新提交年份:
2010
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Machine Learning
机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Computer Vision and Pattern Recognition 计算机视觉与模式识别
分类描述:Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.
涵盖图像处理、计算机视觉、模式识别和场景理解。大致包括ACM课程I.2.10、I.4和I.5中的材料。
--
---
英文摘要:
Current statistical models for structured prediction make simplifying assumptions about the underlying output graph structure, such as assuming a low-order Markov chain, because exact inference becomes intractable as the tree-width of the underlying graph increases. Approximate inference algorithms, on the other hand, force one to trade off representational power with computational efficiency. In this paper, we propose two new types of probabilistic graphical models, large margin Boltzmann machines (LMBMs) and large margin sigmoid belief networks (LMSBNs), for structured prediction. LMSBNs in particular allow a very fast inference algorithm for arbitrary graph structures that runs in polynomial time with a high probability. This probability is data-distribution dependent and is maximized in learning. The new approach overcomes the representation-efficiency trade-off in previous models and allows fast structured prediction with complicated graph structures. We present results from applying a fully connected model to multi-label scene classification and demonstrate that the proposed approach can yield significant performance gains over current state-of-the-art methods.
---
PDF链接:
https://arxiv.org/pdf/1003.4781