摘要翻译:
本文介绍了一种在不需要随机访问的情况下压缩二元决策图的新技术。使用该技术,压缩和解压缩可以在BDD大小的线性时间内完成,并且压缩在许多情况下将BDD的大小减小到每个节点1-2比特。给出了我们的压缩技术的经验结果,包括与以前介绍的技术的比较,表明新技术在所有测试实例中都占主导地位。
---
英文标题:
《Compressing Binary Decision Diagrams》
---
作者:
Esben Rune Hansen, S. Srinivasa Rao, Peter Tiedemann
---
最新提交年份:
2008
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Distributed, Parallel, and Cluster Computing 分布式、并行和集群计算
分类描述:Covers fault-tolerance, distributed algorithms, stabilility, parallel computation, and cluster computing. Roughly includes material in ACM Subject Classes C.1.2, C.1.4, C.2.4, D.1.3, D.4.5, D.4.7, E.1.
包括容错、分布式算法、稳定性、并行计算和集群计算。大致包括ACM学科类C.1.2、C.1.4、C.2.4、D.1.3、D.4.5、D.4.7、E.1中的材料。
--
---
英文摘要:
The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1-2 bits per node. Empirical results for our compression technique are presented, including comparisons with previously introduced techniques, showing that the new technique dominate on all tested instances.
---
PDF链接:
https://arxiv.org/pdf/0805.3267