摘要翻译:
给定一条热带线$l$和一个光滑的热带表面$x$,我们看$l$在$x$上的位置。我们引入了它的原模和对偶模,它们分别是一个装饰图和对偶三角剖分的一个子复。它们对$L$在$X$上的组合位置进行编码。我们对一般光滑热带表面上所有可能的热带线的母题进行了分类。这种分类允许给出一个给定细分的一般光滑热带表面上热带线数目的上界。我们特别关注三度曲面。作为一个具体的例子,我们看对偶于固定蜂窝三角剖分的热带立方曲面,表明一个一般曲面正好包含$27美元的热带线。
---
英文标题:
《Tropical Lines on Cubic Surfaces》
---
作者:
Marta Panizzut and Magnus Dehli Vigeland
---
最新提交年份:
2019
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Combinatorics 组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--
---
英文摘要:
Given a tropical line $L$ and a smooth tropical surface $X$, we look at the position of $L$ on $X$. We introduce its primal and dual motif which are respectively a decorated graph and a subcomplex of the dual triangulation of $X$. They encode the combinatorial position of $L$ on $X$. We classify all possible motifs of tropical lines on general smooth tropical surfaces. This classification allows to give an upper bound for the number of tropical lines on a general smooth tropical surface with a given subdivision. We focus in particular on surfaces of degree three. As a concrete example, we look at tropical cubic surfaces dual to a fixed honeycomb triangulation, showing that a general surface contains exactly $27$ tropical lines.
---
PDF链接:
https://arxiv.org/pdf/0708.3847