摘要翻译:
结果表明,对于具有孤立奇异点的曲线,其对数正则阈值是由该曲线在适当的局部参数系统中的理想项来计算的。利用奇点的Enriques图证明了对数正则阈值只依赖于该图的一条非退化路径。
---
英文标题:
《Log-canonical threshold for curves on a smooth surface》
---
作者:
Marian Aprodu (IMAR) and Daniel Naie (LAREMA)
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
It is shown that the log-canonical threshold of a curve with an isolated singularity is computed by the term ideal of the curve in a suitable system of local parameters at the singularity. The proof uses the Enriques diagram of the singularity and shows that the log-canonical threshold depends only on a non-degenerate path of that diagram.
---
PDF链接:
https://arxiv.org/pdf/0707.0783