摘要翻译:
我们把生物看作是环境演化的观察者,实时记录关于环境状态空间X的感觉信息。感官信息被采样,然后在两个层次上处理。在生物学层面上,有机体充当了观察者对输入数据的主观相关性的评估机制:观察者将激发值分配给它可以使用其感官设备识别的X中的事件。在算法层面上,感官输入用于更新数据库,即观察者的存储器,其目的是充当X的几何/组合模型,其节点由评估机制产生的激励值加权。这些值作为一个指导系统,决定随着观测数据的增加,数据库应该如何转换。我们定义了该模型的搜索问题,讨论了该模型的灵活性和计算效率,以及将其实现为类神经元单元的动态网络的可能性。我们展示了如何在这个模型的框架内解释人类记忆和思维过程的各种容易观察到的特性。这些包括:推理(有效率界限)、错误、暂时和永久的信息丢失。我们也可以用新模型来定义一般的学习问题,例如语言习得问题。
---
英文标题:
《A Formal Approach to Modeling the Memory of a Living Organism》
---
作者:
Dan Guralnik
---
最新提交年份:
2010
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Data Structures and Algorithms 数据结构与算法
分类描述:Covers data structures and analysis of algorithms. Roughly includes material in ACM Subject Classes E.1, E.2, F.2.1, and F.2.2.
涵盖数据结构和算法分析。大致包括ACM学科类E.1、E.2、F.2.1和F.2.2中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Machine Learning
机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Quantitative Biology 数量生物学
二级分类:Neurons and Cognition 神经元与认知
分类描述:Synapse, cortex, neuronal dynamics, neural network, sensorimotor control, behavior, attention
突触,皮层,神经元动力学,
神经网络,感觉运动控制,行为,注意
--
---
英文摘要:
We consider a living organism as an observer of the evolution of its environment recording sensory information about the state space X of the environment in real time. Sensory information is sampled and then processed on two levels. On the biological level, the organism serves as an evaluation mechanism of the subjective relevance of the incoming data to the observer: the observer assigns excitation values to events in X it could recognize using its sensory equipment. On the algorithmic level, sensory input is used for updating a database, the memory of the observer whose purpose is to serve as a geometric/combinatorial model of X, whose nodes are weighted by the excitation values produced by the evaluation mechanism. These values serve as a guidance system for deciding how the database should transform as observation data mounts. We define a searching problem for the proposed model and discuss the model's flexibility and its computational efficiency, as well as the possibility of implementing it as a dynamic network of neuron-like units. We show how various easily observable properties of the human memory and thought process can be explained within the framework of this model. These include: reasoning (with efficiency bounds), errors, temporary and permanent loss of information. We are also able to define general learning problems in terms of the new model, such as the language acquisition problem.
---
PDF链接:
https://arxiv.org/pdf/1003.3821