摘要翻译:
像任何其他逻辑理论一样,关于动作的推理中的领域描述可能会演变,因此需要修正方法来充分适应关于动作行为的新信息。本文的工作是关于改变命题动态逻辑中的动作域描述。它的贡献有三个方面:首先,我们重新讨论了在以前的工作中所做的动作理论收缩的语义,给出了基于Kripke模型之间距离的概念来表示最小变化的更鲁棒的算子。其次,给出了句法动作理论收缩的算法,并证明了算法的正确性。我们的语义学。最后,我们陈述了作用理论收缩的公设,并评估了我们的操作者W.R.T.的行为。他们。此外,我们还解决了行动理论变化的修正对应物,表明它受益于我们的语义收缩。
---
英文标题:
《Action Theory Evolution》
---
作者:
Ivan Varzinczak
---
最新提交年份:
2008
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Logic in Computer Science 计算机科学中的逻辑
分类描述:Covers all aspects of logic in computer science, including finite model theory, logics of programs, modal logic, and program verification. Programming language semantics should have Programming Languages as the primary subject area. Roughly includes material in ACM Subject Classes D.2.4, F.3.1, F.4.0, F.4.1, and F.4.2; some material in F.4.3 (formal languages) may also be appropriate here, although Computational Complexity is typically the more appropriate subject area.
涵盖计算机科学中逻辑的所有方面,包括有限模型理论,程序逻辑,模态逻辑和程序验证。程序设计语言语义学应该把程序设计语言作为主要的学科领域。大致包括ACM学科类D.2.4、F.3.1、F.4.0、F.4.1和F.4.2中的材料;F.4.3(形式语言)中的一些材料在这里也可能是合适的,尽管计算复杂性通常是更合适的主题领域。
--
---
英文摘要:
Like any other logical theory, domain descriptions in reasoning about actions may evolve, and thus need revision methods to adequately accommodate new information about the behavior of actions. The present work is about changing action domain descriptions in propositional dynamic logic. Its contribution is threefold: first we revisit the semantics of action theory contraction that has been done in previous work, giving more robust operators that express minimal change based on a notion of distance between Kripke-models. Second we give algorithms for syntactical action theory contraction and establish their correctness w.r.t. our semantics. Finally we state postulates for action theory contraction and assess the behavior of our operators w.r.t. them. Moreover, we also address the revision counterpart of action theory change, showing that it benefits from our semantics for contraction.
---
PDF链接:
https://arxiv.org/pdf/0811.1878