全部版块 我的主页
论坛 经济学人 二区 外文文献专区
212 0
2022-03-05
摘要翻译:
选择了简单的记忆任务,如矩阵上的二进制代码。在建立适当的程序后,将汇编好的矩阵单独提交给150名大学生,他们必须记住这些矩阵。类似任务的计算机模拟是可用的,它使用感知器,在感知器上实现了允许某种程度的全局性(在通常的玻尔兹曼-吉布斯统计力学的当前推广中,技术上称为熵非扩展性)的算法。我们的主要观察是,对于我们在这里关注的非常具体的学习任务,人类的表现类似于稍微非广泛的感知器。
---
英文标题:
《Human and computer learning: An experimental study》
---
作者:
Alexandra C. Tsallis, Constantino Tsallis, Aglae C.N. de Magalhaes,
  Francisco A. Tamarit
---
最新提交年份:
2004
---
分类信息:

一级分类:Quantitative Biology        数量生物学
二级分类:Neurons and Cognition        神经元与认知
分类描述:Synapse, cortex, neuronal dynamics, neural network, sensorimotor control, behavior, attention
突触,皮层,神经元动力学,神经网络,感觉运动控制,行为,注意
--
一级分类:Quantitative Biology        数量生物学
二级分类:Other Quantitative Biology        其他定量生物学
分类描述:Work in quantitative biology that does not fit into the other q-bio classifications
不适合其他q-bio分类的定量生物学工作
--

---
英文摘要:
  Simple memorizing tasks have been chosen such as a binary code on a matrix. After the establishment of an appropriate protocol, the codified matrices were individually presented to 150 university students who had to memorize them. A computer simulation for a similar task is available which uses a perceptron on which an algorithm was implemented allowing for some degree of globality (technically referred to as entropic nonextensivity within a current generalization of the usual, Boltzmann-Gibbs, statistical mechanics). Our main observation is that, for the very specific learning task on which we focus here, humans perform similarly to slightly nonextensive perceptrons.
---
PDF链接:
https://arxiv.org/pdf/q-bio/0410005
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群