摘要翻译:
1888年,希尔伯特描述了如何在一个以上的变量中找到实多项式,这些多项式只取非负值,但不是多项式的平方和。他的结构是如此严格,直到20世纪60年代末才出现明确的例子。我们重新讨论并推广了Hilbert的构造,并给出了许多这样的多项式。
---
英文标题:
《On Hilbert's construction of positive polynomials》
---
作者:
Bruce Reznick
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics        数学
二级分类:Number Theory        数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
---
英文摘要:
  In 1888, Hilbert described how to find real polynomials in more than one variable which take only non-negative values but are not a sum of squares of polynomials. His construction was so restrictive that no explicit examples appeared until the late 1960s. We revisit and generalize Hilbert's construction and present many such polynomials. 
---
PDF链接:
https://arxiv.org/pdf/0707.2156