摘要翻译:
保证5G无线网络及以后的超可靠低时延通信(URLLC)具有重要意义,目前正受到学术界和工业界的广泛关注。URLLC的核心是要求偏离基于预期效用的网络设计方法,在这种方法中,依赖平均数量(例如,平均吞吐量、平均延迟和平均响应时间)不再是一种选择,而是一种必要的选择。相反,一个考虑延迟、可靠性、数据包大小、网络体系结构和拓扑(跨接入、边缘和核心)以及不确定性下决策的原则性和可扩展性框架非常缺乏。本文的首要目标是填补这一空白的第一步。为了实现这一愿景,在提供了延迟和可靠性的定义之后,我们仔细研究了URLLC的各种支持因素及其内在的折衷。随后,我们将注意力集中在与超可靠和低延迟通信需求相关的大量技术和方法上,以及通过选定的用例对它们的应用。这些结果为设计低时延、高可靠的无线网络提供了清晰的见解。
---
英文标题:
《Ultra-Reliable and Low-Latency Wireless Communication: Tail, Risk and
Scale》
---
作者:
Mehdi Bennis, M\'erouane Debbah, and H. Vincent Poor
---
最新提交年份:
2018
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Information Theory 信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Mathematics 数学
二级分类:Information Theory 信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--
---
英文摘要:
Ensuring ultra-reliable and low-latency communication (URLLC) for 5G wireless networks and beyond is of capital importance and is currently receiving tremendous attention in academia and industry. At its core, URLLC mandates a departure from expected utility-based network design approaches, in which relying on average quantities (e.g., average throughput, average delay and average response time) is no longer an option but a necessity. Instead, a principled and scalable framework which takes into account delay, reliability, packet size, network architecture, and topology (across access, edge, and core) and decision-making under uncertainty is sorely lacking. The overarching goal of this article is a first step to fill this void. Towards this vision, after providing definitions of latency and reliability, we closely examine various enablers of URLLC and their inherent tradeoffs. Subsequently, we focus our attention on a plethora of techniques and methodologies pertaining to the requirements of ultra-reliable and low-latency communication, as well as their applications through selected use cases. These results provide crisp insights for the design of low-latency and high-reliable wireless networks.
---
PDF链接:
https://arxiv.org/pdf/1801.0127