摘要翻译:
在本文中,我们提出了一个分析时间序列模型预测的一般框架,并展示了一大类流行的时间序列模型是如何满足这个框架的。我们假定了一组高层次的假设,并对前述时间序列模型的这些假设进行了形式上的验证。我们的框架与Beutner等人的框架不谋而合。(2019,ARXIV:1710.00643)为在该框架中所做的预测建立了条件置信区间的有效性。因此,本论文补充了Beutner等人的结果。(2019,ARXIV:1710.00643)通过提供其理论的实际相关应用。
---
英文标题:
《A General Framework for Prediction in Time Series Models》
---
作者:
Eric Beutner, Alexander Heinemann and Stephan Smeekes
---
最新提交年份:
2019
---
分类信息:
一级分类:Economics 经济学
二级分类:Econometrics 计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
---
英文摘要:
In this paper we propose a general framework to analyze prediction in time series models and show how a wide class of popular time series models satisfies this framework. We postulate a set of high-level assumptions, and formally verify these assumptions for the aforementioned time series models. Our framework coincides with that of Beutner et al. (2019, arXiv:1710.00643) who establish the validity of conditional confidence intervals for predictions made in this framework. The current paper therefore complements the results in Beutner et al. (2019, arXiv:1710.00643) by providing practically relevant applications of their theory.
---
PDF链接:
https://arxiv.org/pdf/1902.01622