摘要翻译:
本文在Chow动机上定义了Lawson同调和morphic上同调。我们还定义了有限商射影簇的Chow动机的有理系数、Lawson同调和态上同调。由此,我们得到了光滑复射影曲面上点的Hilbert格式的一个公式。对泛型有限映射作了进一步的讨论。因此,我们利用Ceresa的一个结果给出了具有非平凡Griffiths群的光滑射影曲线的自积的例子。
---
英文标题:
《Lawson homology, morphic cohomology and Chow motives》
---
作者:
Wenchuan Hu and Li Li
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:K-Theory and Homology K-理论与同调
分类描述:Algebraic and topological K-theory, relations with topology, commutative algebra, and operator algebras
代数和拓扑K-理论,与拓扑的关系,交换代数和算子代数
--
---
英文摘要:
In this paper, the Lawson homology and morphic cohomology are defined on the Chow motives. We also define the rational coefficient Lawson homology and morphic cohomology of the Chow motives of finite quotient projective varieties. As a consequence, we obtain a formula for the Hilbert scheme of points on a smooth complex projective surface. Further discussion concerning generic finite maps is given. As a result, we give examples of self-product of smooth projective curves with nontrivial Griffiths groups by using a result of Ceresa.
---
PDF链接:
https://arxiv.org/pdf/0711.0383