摘要翻译:
通过对相关的toric簇$y$的限制,我们描述了极小秩对称空间的奇妙紧化$x$的等变Chow环。我们还证明了切丛$T_x$及其对数类似物$S_x$对$Y$的限制分解为线丛的直和。这给出了$T_x$和$S_x$的等变Chern类的封闭公式,进而给出了Kiritchenko所考虑的还原群的Chern类的封闭公式。
---
英文标题:
《Equivariant Chow ring and Chern classes of wonderful symmetric varieties
  of minimal rank》
---
作者:
Michel Brion and Roy Joshua
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics        数学
二级分类:Algebraic Topology        代数拓扑
分类描述:Homotopy theory, homological algebra, algebraic treatments of manifolds
同伦理论,同调代数,流形的代数处理
--
---
英文摘要:
  We describe the equivariant Chow ring of the wonderful compactification $X$ of a symmetric space of minimal rank, via restriction to the associated toric variety $Y$. Also, we show that the restrictions to $Y$ of the tangent bundle $T_X$ and its logarithmic analogue $S_X$ decompose into a direct sum of line bundles. This yields closed formulae for the equivariant Chern classes of $T_X$ and $S_X$, and, in turn, for the Chern classes of reductive groups considered by Kiritchenko. 
---
PDF链接:
https://arxiv.org/pdf/0705.1035