摘要翻译:
本文讨论了Chow群及其等价的双扩张的四种方法。这是S.Bloch给出的一个显式构造,一个用对偶中间Jacobian的Poincare双扩张的构造,一个用K-上同调的构造,以及一个用相干束上同调的行列式的构造。给出了J.Franke的Chow范畴的一种新方法。得到了代数圈的Weil对的一个显式公式。
---
英文标题:
《Notes on the biextension of Chow groups》
---
作者:
Sergey Gorchinskiy
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:K-Theory and Homology K-理论与同调
分类描述:Algebraic and topological K-theory, relations with topology, commutative algebra, and operator algebras
代数和拓扑K-理论,与拓扑的关系,交换代数和算子代数
--
---
英文摘要:
The paper discusses four approaches to the biextension of Chow groups and their equivalences. These are the following: an explicit construction given by S.Bloch, a construction in terms of the Poincare biextension of dual intermediate Jacobians, a construction in terms of K-cohomology, and a construction in terms of determinant of cohomology of coherent sheaves. A new approach to J.Franke's Chow categories is given. An explicit formula for the Weil pairing of algebraic cycles is obtained.
---
PDF链接:
https://arxiv.org/pdf/0802.1437