摘要翻译:
我们提出了一个分数协整时间序列的设置,它是由潜在的、集成的和短记忆分量组成的。它能适应不同分数阶的非平稳过程和不同强度的协整,适用于高维环境。在已实现的协方差矩阵的应用中,我们发现与几种竞争方法相比,正交短内存和长内存分量提供了合理的拟合和竞争性的样本外性能。
---
英文标题:
《Multivariate Fractional Components Analysis》
---
作者:
Tobias Hartl and Roland Weigand
---
最新提交年份:
2019
---
分类信息:
一级分类:Economics 经济学
二级分类:Econometrics 计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
---
英文摘要:
We propose a setup for fractionally cointegrated time series which is formulated in terms of latent integrated and short-memory components. It accommodates nonstationary processes with different fractional orders and cointegration of different strengths and is applicable in high-dimensional settings. In an application to realized covariance matrices, we find that orthogonal short- and long-memory components provide a reasonable fit and competitive out-of-sample performance compared to several competing methods.
---
PDF链接:
https://arxiv.org/pdf/1812.09149