摘要翻译:
对于许多投票规则,计算一个成功的操纵是NP困难的。然而,NP硬度只限制了最坏情况下的复杂度。最近的理论结果表明,在实践中,操作往往很容易。我们实证研究了操纵单一可转移投票(STV)规则的成本。这是第一个被证明是NP难以操纵的规则之一。它似乎也是更难操纵的规则之一,因为它涉及多轮,而且与许多其他规则不同,单个代理在没有投票权重或不确定其他代理如何投票的情况下操纵是NP困难的。在我们的实验中,几乎在每一次选举中,很容易计算单个agent如何操纵选举,或者证明单个agent的操纵是不可能的。这仍然是一个有趣的悬而未决的问题,如果由一个代理联盟的操纵在实践中难以计算。
---
英文标题:
《Manipulability of Single Transferable Vote》
---
作者:
Toby Walsh
---
最新提交年份:
2009
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Computational Complexity 计算复杂度
分类描述:Covers models of computation, complexity classes, structural complexity, complexity tradeoffs, upper and lower bounds. Roughly includes material in ACM Subject Classes F.1 (computation by abstract devices), F.2.3 (tradeoffs among complexity measures), and F.4.3 (formal languages), although some material in formal languages may be more appropriate for Logic in Computer Science. Some material in F.2.1 and F.2.2, may also be appropriate here, but is more likely to have Data Structures and Algorithms as the primary subject area.
涵盖计算模型,复杂度类别,结构复杂度,复杂度折衷,上限和下限。大致包括ACM学科类F.1(抽象设备的计算)、F.2.3(复杂性度量之间的权衡)和F.4.3(形式语言)中的材料,尽管形式语言中的一些材料可能更适合于计算机科学中的逻辑。在F.2.1和F.2.2中的一些材料可能也适用于这里,但更有可能以数据结构和算法作为主要主题领域。
--
一级分类:Computer Science 计算机科学
二级分类:Computer Science and Game Theory 计算机科学与博弈论
分类描述:Covers all theoretical and applied aspects at the intersection of computer science and game theory, including work in mechanism design, learning in games (which may overlap with Learning), foundations of agent modeling in games (which may overlap with Multiagent systems), coordination, specification and formal methods for non-cooperative computational environments. The area also deals with applications of game theory to areas such as electronic commerce.
涵盖计算机科学和博弈论交叉的所有理论和应用方面,包括机制设计的工作,游戏中的学习(可能与学习重叠),游戏中的agent建模的基础(可能与多agent系统重叠),非合作计算环境的协调、规范和形式化方法。该领域还涉及博弈论在电子商务等领域的应用。
--
一级分类:Computer Science 计算机科学
二级分类:Multiagent Systems 多智能体系统
分类描述:Covers multiagent systems, distributed artificial intelligence, intelligent agents, coordinated interactions. and practical applications. Roughly covers ACM Subject Class I.2.11.
涵盖多Agent系统、分布式人工智能、智能Agent、协调交互。和实际应用。大致涵盖ACM科目I.2.11类。
--
---
英文摘要:
For many voting rules, it is NP-hard to compute a successful manipulation. However, NP-hardness only bounds the worst-case complexity. Recent theoretical results suggest that manipulation may often be easy in practice. We study empirically the cost of manipulating the single transferable vote (STV) rule. This was one of the first rules shown to be NP-hard to manipulate. It also appears to be one of the harder rules to manipulate since it involves multiple rounds and since, unlike many other rules, it is NP-hard for a single agent to manipulate without weights on the votes or uncertainty about how the other agents have voted. In almost every election in our experiments, it was easy to compute how a single agent could manipulate the election or to prove that manipulation by a single agent was impossible. It remains an interesting open question if manipulation by a coalition of agents is hard to compute in practice.
---
PDF链接:
https://arxiv.org/pdf/0911.3708