摘要翻译:
讨论了四维纯SU(2)格点规范理论的复$\beta$平面(Fisher零点)中配分函数零点位置的明显悖论。我们提出了一个新的判据来绘制复$\beta$平面的区域,当态密度几乎是高斯的但不完全是高斯的时,重新加权方法是可信的。我们提出了新的方法来推断零点在这个区域之外的存在性。我们用准高斯蒙特卡罗分布证明了这些建议的可靠性,其中零点的位置可以用独立的数值方法计算。结果表明,该方法可以应用于一般的格点模型。对特定格模型的应用将在一个单独的出版物中讨论。
---
英文标题:
《Fisher's zeros of quasi-Gaussian densities of states》
---
作者:
A. Denbleyker, D. Du, Y. Meurice, A. Velytsky
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:High Energy Physics - Lattice 高能物理-晶格
分类描述:Lattice field theory. Phenomenology from lattice field theory. Algorithms for lattice field theory. Hardware for lattice field theory.
晶格场论。从晶格场论到现象学。格场论的算法。晶格场论硬件。
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:High Energy Physics - Theory 高能物理-理论
分类描述:Formal aspects of quantum field theory. String theory, supersymmetry and supergravity.
量子场论的形式方面。弦理论,超对称性和超引力。
--
---
英文摘要:
We discuss apparent paradoxes regarding the location of the zeros of the partition function in the complex $\beta$ plane (Fisher's zeros) of a pure SU(2) lattice gauge theory in 4 dimensions. We propose a new criterion to draw the region of the complex $\beta$ plane where reweighting methods can be trusted when the density of states is almost but not exactly Gaussian. We propose new methods to infer the existence of zeros outside of this region. We demonstrate the reliability of these proposals with quasi Gaussian Monte Carlo distributions where the locations of the zeros can be calculated by independent numerical methods. The results are presented in such way that the methods can be applied for general lattice models. Applications to specific lattice models will be discussed in a separate publication.
---
PDF链接:
https://arxiv.org/pdf/708.0438