摘要翻译:
特征类中的Thom(残差)多项式用于泛函空间的几何分析。它们是描述类Poincar\'e的工具,对规定类型的函数的子变体是对偶的。在具有孤立奇点和多奇点的复曲线上,用较少的特征类给出了函数空间中剩余多项式的显式泛表达式。这些表达式导致了Hurwitz空间分层的部分显式描述。
---
英文标题:
《Thom polynomials for maps of curves with isolated singularities》
---
作者:
M. E. Kazarian, S. K. Lando
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Thom (residual) polynomials in characteristic classes are used in the analysis of geometry of functional spaces. They serve as a tool in description of classes Poincar\'e dual to subvarieties of functions of prescribed types. We give explicit universal expressions for residual polynomials in spaces of functions on complex curves having isolated singularities and multisingularities, in terms of few characteristic classes. These expressions lead to a partial explicit description of a stratification of Hurwitz spaces.
---
PDF链接:
https://arxiv.org/pdf/0706.1523