摘要翻译:
Lascar将E_KP描述为E_L的一个合成和EL的拓扑闭包。我们将这一结果推广到其他一些等价关系对。由于试图构造一个新的非G-紧致理论的例子,我们考虑下面的例子。假定G是一个可定义在结构M中的群,我们将由M和X组成的结构M0定义为两类,其中X是G的仿射拷贝,在M0中我们有M的结构和G对X的作用。我们证明了M0的Lascar群是M和G/GL的Lascar群的半直积。讨论了M的G-紧性与M0的关系。这个例子可能会产生新的非g-紧致理论的例子。
---
英文标题:
《G-Compactness and Groups》
---
作者:
Jakub Gismatullin and Ludomir Newelski
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Logic 逻辑
分类描述:Logic, set theory, point-set topology, formal mathematics
逻辑,集合论,点集拓扑,形式数学
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Lascar described E_KP as a composition of E_L and the topological closure of EL. We generalize this result to some other pairs of equivalence relations. Motivated by an attempt to construct a new example of a non-G-compact theory, we consider the following example. Assume G is a group definable in a structure M. We define a structure M_0 consisting of M and X as two sorts, where X is an affine copy of G and in M_0 we have the structure of M and the action of G on X. We prove that the Lascar group of M_0 is a semi-direct product of the Lascar group of M and G/G_L. We discuss the relationship between G-compactness of M and M_0. This example may yield new examples of non-G-compact theories.
---
PDF链接:
https://arxiv.org/pdf/0707.2400