摘要翻译:
本文建立了一个研究强同伦代数上同调理论的一般框架,即$A_\infty,C_\infty,$L_\infty-代数。这个框架是以Connes和Kontsevich所阐述的非对易几何为基础的。然后利用所发展的机制建立了Hochschild的Hodge分解和$C_\infty$-代数的循环上同调的一般形式。这概括了Loday和Gerstenhaber-Schack以前的工作,并将其置于一个概念框架中。
---
英文标题:
《Cohomology theories for homotopy algebras and noncommutative geometry》
---
作者:
Alastair Hamilton and Andrey Lazarev
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Quantum Algebra 量子代数
分类描述:Quantum groups, skein theories, operadic and diagrammatic algebra, quantum field theory
量子群,skein理论,运算代数和图解代数,量子场论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:K-Theory and Homology K-理论与同调
分类描述:Algebraic and topological K-theory, relations with topology, commutative algebra, and operator algebras
代数和拓扑K-理论,与拓扑的关系,交换代数和算子代数
--
---
英文摘要:
This paper builds a general framework in which to study cohomology theories of strongly homotopy algebras, namely $A_\infty, C_\infty$ and $L_\infty$-algebras. This framework is based on noncommutative geometry as expounded by Connes and Kontsevich. The developed machinery is then used to establish a general form of Hodge decomposition of Hochschild and cyclic cohomology of $C_\infty$-algebras. This generalizes and puts in a conceptual framework previous work by Loday and Gerstenhaber-Schack.
---
PDF链接:
https://arxiv.org/pdf/0707.3937