摘要翻译:
剪接商是W.Neumann和J.Wahl定义的一类具有有理同调球环的法面奇点。若Gamma是满足一定组合条件的有理曲线树,则存在具有分辨图Gamma的拼接商。假定方程z^n=f(x,y)定义了一个曲面X_{f,n},其原点在C^3中有一个孤立的奇点。对于f不可约,我们用n和f的Puiseux对的一个变体完全刻画了分辨图满足拼接商所必需的组合条件的X_{f,n}。这个结果是拓扑的;另外讨论了X_{f,n}与剪接商是否解析同构。
---
英文标题:
《On the topology of surface singularities {z^n=f(x,y)}, for f irreducible》
---
作者:
Elizabeth A. Sell
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
The splice quotients are an interesting class of normal surface singularities with rational homology sphere links, defined by W. Neumann and J. Wahl. If Gamma is a tree of rational curves that satisfies certain combinatorial conditions, then there exist splice quotients with resolution graph Gamma. Suppose the equation z^n=f(x,y) defines a surface X_{f,n} with an isolated singularity at the origin in C^3. For f irreducible, we completely characterize, in terms of n and a variant of the Puiseux pairs of f, those X_{f,n} for which the resolution graph satisfies the combinatorial conditions that are necessary for splice quotients. This result is topological; whether or not X_{f,n} is analytically isomorphic to a splice quotient is treated separately.
---
PDF链接:
https://arxiv.org/pdf/0708.3174