摘要翻译:
对于d>=2,定义了d次平面曲线的映射类群,并证明了该映射类群上唯一存在Meyer函数。在d=4的情况下,利用我们的Meyer函数,我们可以定义一般纤维为3属的非超椭圆紧Riemann曲面的四维纤维空间的局部签名。我们将给出局部签名的一些计算。
---
英文标题:
《The mapping class group and the Meyer function for plane curves》
---
作者:
Yusuke Kuno
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Geometric Topology 几何拓扑
分类描述:Manifolds, orbifolds, polyhedra, cell complexes, foliations, geometric structures
流形,轨道,多面体,细胞复合体,叶状,几何结构
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
For each d>=2, the mapping class group for plane curves of degree d will be defined and it is proved that there exists uniquely the Meyer function on this group. In the case of d=4, using our Meyer function, we can define the local signature for 4-dimensional fiber spaces whose general fibers are non-hyperelliptic compact Riemann surfaces of genus 3. Some computations of our local signature will be given.
---
PDF链接:
https://arxiv.org/pdf/0707.4332