全部版块 我的主页
论坛 经济学人 二区 外文文献专区
278 0
2022-03-05
摘要翻译:
在本文中,我们在音频事件检测中引入了事件性的概念,它在一定程度上可以被看作是计算机视觉中的对象性的一种模拟。事件概念背后的关键观察是,音频事件在频谱图中表现为具有特定纹理和几何结构的二维时频模式。然后,这些时频模式可以类似于自然图像中出现的对象来查看(除了缩放和旋转不变性属性不适用之外)。考虑到这一关键观察,我们将单声道或多声道音频事件的检测问题作为一个等价的视觉目标检测问题,在部分遮挡和频谱图中的杂波情况下。我们采用了一个最先进的视觉对象检测模型来评估公开数据集上的音频事件检测任务。拟议的网络与最先进的基线具有可比性,对少数群体事件更加稳健。在提供大规模数据集的情况下,我们希望我们提出的事件性概念模型能够对音频信号处理界有所帮助,从而提高音频事件检测的性能。
---
英文标题:
《Eventness: Object Detection on Spectrograms for Temporal Localization of
  Audio Events》
---
作者:
Phuong Pham, Juncheng Li, Joseph Szurley, Samarjit Das
---
最新提交年份:
2018
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Sound        声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Audio and Speech Processing        音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome.  Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval;  audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--

---
英文摘要:
  In this paper, we introduce the concept of Eventness for audio event detection, which can, in part, be thought of as an analogue to Objectness from computer vision. The key observation behind the eventness concept is that audio events reveal themselves as 2-dimensional time-frequency patterns with specific textures and geometric structures in spectrograms. These time-frequency patterns can then be viewed analogously to objects occurring in natural images (with the exception that scaling and rotation invariance properties do not apply). With this key observation in mind, we pose the problem of detecting monophonic or polyphonic audio events as an equivalent visual object(s) detection problem under partial occlusion and clutter in spectrograms. We adapt a state-of-the-art visual object detection model to evaluate the audio event detection task on publicly available datasets. The proposed network has comparable results with a state-of-the-art baseline and is more robust on minority events. Provided large-scale datasets, we hope that our proposed conceptual model of eventness will be beneficial to the audio signal processing community towards improving performance of audio event detection.
---
PDF链接:
https://arxiv.org/pdf/1712.09668
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群