摘要翻译:
提出了一种学习二部图中最大权匹配预测子的方法。该方法包括在具有编码排列和数据特征的足够统计量的指数族中执行最大后验估计。虽然推理一般是困难的,但我们证明了对于一个非常相关的应用--网页排序--精确推理是有效的。对于一般的模型实例,一个合适的采样器是现成的。与现有的最大边界匹配模型相反,我们的方法在统计上是一致的,此外,随着样本大小的增加,实验表明比这些模型有更好的改进。我们将该方法应用于计算机视觉中的图形匹配,以及用于学习网页排序的标准基准数据集,得到了最先进的结果,特别是对最大边值变量的改进。这种方法在最大边距选择方面的缺点是它对大图的运行时间比较高。
---
英文标题:
《Exponential Family Graph Matching and Ranking》
---
作者:
James Petterson, Tiberio Caetano, Julian McAuley, Jin Yu
---
最新提交年份:
2009
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Machine Learning
机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
We present a method for learning max-weight matching predictors in bipartite graphs. The method consists of performing maximum a posteriori estimation in exponential families with sufficient statistics that encode permutations and data features. Although inference is in general hard, we show that for one very relevant application - web page ranking - exact inference is efficient. For general model instances, an appropriate sampler is readily available. Contrary to existing max-margin matching models, our approach is statistically consistent and, in addition, experiments with increasing sample sizes indicate superior improvement over such models. We apply the method to graph matching in computer vision as well as to a standard benchmark dataset for learning web page ranking, in which we obtain state-of-the-art results, in particular improving on max-margin variants. The drawback of this method with respect to max-margin alternatives is its runtime for large graphs, which is comparatively high.
---
PDF链接:
https://arxiv.org/pdf/0904.2623