摘要翻译:
从著名的有向渗流场理论出发,我们描述了一个在具有非平凡时空动力学的环境中,濒临灭绝的进化种群。在这里,我们考虑环境遵循简单弛豫(模型a)动力学的特殊情况。出现了两个新的算子,其上临界维数为4,它们以一种非平凡的方式将两个理论结合在一起。虽然Wilson-Fisher不动点仍然完全不受影响,但时间尺度的失配破坏了通常的DP不动点的稳定性,暗示了从活跃(生存)状态到不活跃(灭绝)状态的一阶过渡的交叉。
---
英文标题:
《Universal properties of population dynamics with fluctuating resources》
---
作者:
Sayak Mukherjee, H.K. Janssen, and B. Schmittmann
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
Starting from the well-known field theory for directed percolation, we describe an evolving population, near extinction, in an environment with its own nontrivial spatio-temporal dynamics. Here, we consider the special case where the environment follows a simple relaxational (Model A) dynamics. Two new operators emerge, with upper critical dimension of four, which couple the two theories in a nontrivial way. While the Wilson-Fisher fixed point remains completely unaffected, a mismatch of time scales destabilizes the usual DP fixed point, suggesting a crossover to a first order transition from the active (surviving) to the inactive (extinct) state.
---
PDF链接:
https://arxiv.org/pdf/706.045