摘要翻译:
本文研究了一类马尔可夫过程的模拟估计,并讨论了估计的一些强相合性质。估计问题定义在由参数向量索引的连续不变分布上。证明方法中的一个关键步骤是证明一致收敛性(A.S.)参数域上的一族样本分布。这种一致收敛性在动力学过程的弱连续性和单调性条件下成立。将该估计量应用于一个有技术采用的资产定价模型。这个模型的一个挑战是,在产生观察到的股票市场的高波动性的同时,产生其他实际经济总量的低得多的波动性。
---
英文标题:
《Consistency properties of a simulation-based estimator for dynamic
processes》
---
作者:
Manuel S. Santos
---
最新提交年份:
2010
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:General Finance 一般财务
分类描述:Development of general quantitative methodologies with applications in finance
通用定量方法的发展及其在金融中的应用
--
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
---
英文摘要:
This paper considers a simulation-based estimator for a general class of Markovian processes and explores some strong consistency properties of the estimator. The estimation problem is defined over a continuum of invariant distributions indexed by a vector of parameters. A key step in the method of proof is to show the uniform convergence (a.s.) of a family of sample distributions over the domain of parameters. This uniform convergence holds under mild continuity and monotonicity conditions on the dynamic process. The estimator is applied to an asset pricing model with technology adoption. A challenge for this model is to generate the observed high volatility of stock markets along with the much lower volatility of other real economic aggregates.
---
PDF链接:
https://arxiv.org/pdf/1001.2173