摘要翻译:
我们提出了一种用于分子动力学计算自由能剖面的自适应方法的收敛性证明。在数学上,它相当于研究满足非线性随机微分方程的随机过程的长时间行为,其中漂移依赖于过程的某些泛函的条件期望。我们用熵技术证明了指数收敛到定态。
---
英文标题:
《Long-time convergence of an Adaptive Biasing Force method》
---
作者:
Tony Lelievre (CERMICS), Felix Otto (Institute for Applied Mathematics
Universitat Bonn), Mathias Rousset (CERMICS), Gabriel Stoltz (CERMICS)
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Analysis of PDEs 偏微分方程分析
分类描述:Existence and uniqueness, boundary conditions, linear and non-linear operators, stability, soliton theory, integrable PDE's, conservation laws, qualitative dynamics
存在唯一性,边界条件,线性和非线性算子,稳定性,孤子理论,可积偏微分方程,守恒律,定性动力学
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Computational Physics 计算物理学
分类描述:All aspects of computational science applied to physics.
应用于物理学的计算科学的各个方面。
--
---
英文摘要:
We propose a proof of convergence of an adaptive method used in molecular dynamics to compute free energy profiles. Mathematically, it amounts to studying the long-time behavior of a stochastic process which satisfies a non-linear stochastic differential equation, where the drift depends on conditional expectations of some functionals of the process. We use entropy techniques to prove exponential convergence to the stationary state.
---
PDF链接:
https://arxiv.org/pdf/706.1695