摘要翻译:
我们统一和推广了Campillo、Delgado和Gusein-Zade在他们的系列文章中得到的公式。对有理奇点和极小椭圆奇点建立了肯定的结果。通过实例和反例,我们还试图找到这些恒等式的“极限”。讨论了与Seiberg-Witten不变猜想和半群密度猜想的联系。
---
英文标题:
《Poincar\'e series associated with surface singularities》
---
作者:
Andr\'as N\'emethi
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We unify and generalize formulas obtained by Campillo, Delgado and Gusein-Zade in their series of articles. Positive results are established for rational and minimally elliptic singularities. By examples and counterexamples we also try to find the `limits' of these identities. Connections with the Seiberg-Witten Invariant Conjecture and Semigroup Density Conjecture are discussed.
---
PDF链接:
https://arxiv.org/pdf/0710.0987