摘要翻译:
对于正亏格的紧致Riemann曲面X,秩r和水平k的丛的模上的某些θ丛的截面空间与秩k和水平r的截面的相似空间的对偶存在自然映射(奇异对偶同构)。当X在一个族中变化时,同构的两边都带有射影连接。我们证明了这张地图是(射影上)平坦的。
---
英文标题:
《Strange duality and the Hitchin/WZW connection》
---
作者:
Prakash Belkale
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Representation Theory 表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
---
英文摘要:
For a compact Riemann surface X of positive genus, the space of sections of certain theta bundle on moduli of bundles of rank r and level k admits a natural map to (the dual of) a similar space of sections of rank k and level r (the strange duality isomorphism). Both sides of the isomorphism carry projective connections as X varies in a family. We prove that this map is (projectively) flat.
---
PDF链接:
https://arxiv.org/pdf/0705.0717