摘要翻译:
给出了Mirzakhani关于模空间体积的递推的一个新的证明和推广。我们用Kontsevich积分中的期望值来解释这些递归关系,即把它们与Riemann曲面的带状图分解联系起来。我们发现Mirzakhani的递归推广到包含所有更高的Mumford的kappa类的测度,而不是像Weil-Petersson情形那样只包含kappa1。
---
英文标题:
《Recursion between Mumford volumes of moduli spaces》
---
作者:
Bertrand Eynard (SPhT)
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Physics 物理学
二级分类:High Energy Physics - Theory 高能物理-理论
分类描述:Formal aspects of quantum field theory. String theory, supersymmetry and supergravity.
量子场论的形式方面。弦理论,超对称性和超引力。
--
一级分类:Physics 物理学
二级分类:Mathematical Physics 数学物理
分类描述:Articles in this category focus on areas of research that illustrate the application of mathematics to problems in physics, develop mathematical methods for such applications, or provide mathematically rigorous formulations of existing physical theories. Submissions to math-ph should be of interest to both physically oriented mathematicians and mathematically oriented physicists; submissions which are primarily of interest to theoretical physicists or to mathematicians should probably be directed to the respective physics/math categories
这一类别的文章集中在说明数学在物理问题中的应用的研究领域,为这类应用开发数学方法,或提供现有物理理论的数学严格公式。提交的数学-PH应该对物理方向的数学家和数学方向的物理学家都感兴趣;主要对理论物理学家或数学家感兴趣的投稿可能应该指向各自的物理/数学类别
--
一级分类:Mathematics 数学
二级分类:Mathematical Physics 数学物理
分类描述:math.MP is an alias for math-ph. Articles in this category focus on areas of research that illustrate the application of mathematics to problems in physics, develop mathematical methods for such applications, or provide mathematically rigorous formulations of existing physical theories. Submissions to math-ph should be of interest to both physically oriented mathematicians and mathematically oriented physicists; submissions which are primarily of interest to theoretical physicists or to mathematicians should probably be directed to the respective physics/math categories
math.mp是math-ph的别名。这一类别的文章集中在说明数学在物理问题中的应用的研究领域,为这类应用开发数学方法,或提供现有物理理论的数学严格公式。提交的数学-PH应该对物理方向的数学家和数学方向的物理学家都感兴趣;主要对理论物理学家或数学家感兴趣的投稿可能应该指向各自的物理/数学类别
--
---
英文摘要:
We propose a new proof, as well as a generalization of Mirzakhani's recursion for volumes of moduli spaces. We interpret those recursion relations in terms of expectation values in Kontsevich's integral, i.e. we relate them to a Ribbon graph decomposition of Riemann surfaces. We find a generalization of Mirzakhani's recursions to measures containing all higher Mumford's kappa classes, and not only kappa1 as in the Weil-Petersson case.
---
PDF链接:
https://arxiv.org/pdf/0706.4403