摘要翻译:
随机森林是一种有效的非参数回归方法,但其拟合平滑信号的能力有限,并且在存在强平滑效应的情况下表现出较差的预测性能。将随机森林作为一种自适应核方法,将森林核与局部线性回归调整进行配对,以获得更好的捕获平滑性。由此得到的局部线性森林方法,使我们能够改进具有光滑信号的随机森林的渐近收敛速度,并在真实数据和模拟数据上都有很大的精度提高。我们证明了中心极限定理在森林和光滑性约束下的正则性条件下是有效的,并提出了一种计算效率较高的置信区间构造。转到因果推理应用,我们讨论了局部回归调整用于异质性治疗效果估计的优点,并在一个数据集上给出了一个例子,探讨了词语选择对社会安全网态度的影响。最后,我们给出了真实数据和生成数据的仿真结果。
---
英文标题:
《Local Linear Forests》
---
作者:
Rina Friedberg, Julie Tibshirani, Susan Athey, Stefan Wager
---
最新提交年份:
2020
---
分类信息:
一级分类:Statistics 统计学
二级分类:Machine Learning
机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
一级分类:Computer Science 计算机科学
二级分类:Machine Learning 机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Economics 经济学
二级分类:Econometrics 计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、
数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
Random forests are a powerful method for non-parametric regression, but are limited in their ability to fit smooth signals, and can show poor predictive performance in the presence of strong, smooth effects. Taking the perspective of random forests as an adaptive kernel method, we pair the forest kernel with a local linear regression adjustment to better capture smoothness. The resulting procedure, local linear forests, enables us to improve on asymptotic rates of convergence for random forests with smooth signals, and provides substantial gains in accuracy on both real and simulated data. We prove a central limit theorem valid under regularity conditions on the forest and smoothness constraints, and propose a computationally efficient construction for confidence intervals. Moving to a causal inference application, we discuss the merits of local regression adjustments for heterogeneous treatment effect estimation, and give an example on a dataset exploring the effect word choice has on attitudes to the social safety net. Last, we include simulation results on real and generated data.
---
PDF链接:
https://arxiv.org/pdf/1807.11408