全部版块 我的主页
论坛 经济学人 二区 外文文献专区
259 0
2022-03-06
摘要翻译:
在本文中,我们研究了一个多智能体系统的最优控制问题,该多智能体系统是由李群上的左不变控制系统给出的一个无向编队图所建模,该图中的节点描述了每个智能体的运动学。代理应避免它们在工作区中发生冲突。通过在最优控制问题的代价函数中引入一些势函数,对应于Agent之间的形成约束所产生的虚拟力,打破了个体Agent和代价函数的对称性,并通过对称的李群使最优控制问题部分不变。利用流形上的变分微积分技术,得到了正规极值存在的约化必要条件。作为应用,我们研究了一个多单轮式最优控制问题。
---
英文标题:
《Optimal Control of Left-Invariant Multi-Agent Systems with Asymmetric
  Formation Constraints》
---
作者:
Leonardo Colombo, Dimos Dimarogonas
---
最新提交年份:
2020
---
分类信息:

一级分类:Mathematics        数学
二级分类:Optimization and Control        优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Computer Science        计算机科学
二级分类:Multiagent Systems        多智能体系统
分类描述:Covers multiagent systems, distributed artificial intelligence, intelligent agents, coordinated interactions. and practical applications. Roughly covers ACM Subject Class I.2.11.
涵盖多Agent系统、分布式人工智能、智能Agent、协调交互。和实际应用。大致涵盖ACM科目I.2.11类。
--
一级分类:Computer Science        计算机科学
二级分类:Systems and Control        系统与控制
分类描述:cs.SY is an alias for eess.SY. This section includes theoretical and experimental research covering all facets of automatic control systems. The section is focused on methods of control system analysis and design using tools of modeling, simulation and optimization. Specific areas of research include nonlinear, distributed, adaptive, stochastic and robust control in addition to hybrid and discrete event systems. Application areas include automotive and aerospace control systems, network control, biological systems, multiagent and cooperative control, robotics, reinforcement learning, sensor networks, control of cyber-physical and energy-related systems, and control of computing systems.
cs.sy是eess.sy的别名。本部分包括理论和实验研究,涵盖了自动控制系统的各个方面。本节主要介绍利用建模、仿真和优化工具进行控制系统分析和设计的方法。具体研究领域包括非线性、分布式、自适应、随机和鲁棒控制,以及混合和离散事件系统。应用领域包括汽车和航空航天控制系统、网络控制、生物系统、多智能体和协作控制、机器人学、强化学习、传感器网络、信息物理和能源相关系统的控制以及计算系统的控制。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Systems and Control        系统与控制
分类描述:This section includes theoretical and experimental research covering all facets of automatic control systems. The section is focused on methods of control system analysis and design using tools of modeling, simulation and optimization. Specific areas of research include nonlinear, distributed, adaptive, stochastic and robust control in addition to hybrid and discrete event systems. Application areas include automotive and aerospace control systems, network control, biological systems, multiagent and cooperative control, robotics, reinforcement learning, sensor networks, control of cyber-physical and energy-related systems, and control of computing systems.
本部分包括理论和实验研究,涵盖了自动控制系统的各个方面。本节主要介绍利用建模、仿真和优化工具进行控制系统分析和设计的方法。具体研究领域包括非线性、分布式、自适应、随机和鲁棒控制,以及混合和离散事件系统。应用领域包括汽车和航空航天控制系统、网络控制、生物系统、多智能体和协作控制、机器人学、强化学习、传感器网络、信息物理和能源相关系统的控制以及计算系统的控制。
--
一级分类:Mathematics        数学
二级分类:Dynamical Systems        动力系统
分类描述:Dynamics of differential equations and flows, mechanics, classical few-body problems, iterations, complex dynamics, delayed differential equations
微分方程和流动的动力学,力学,经典的少体问题,迭代,复杂动力学,延迟微分方程
--

---
英文摘要:
  In this work, we study an optimal control problem for a multi-agent system modeled by an undirected formation graph with nodes describing the kinematics of each agent, given by a left-invariant control system on a Lie group. The agents should avoid collision between them in the workspace. Such a task is done by introducing some potential functions into the cost function for the optimal control problem, corresponding to fictitious forces, induced by the formation constraint among agents, that break the symmetry of the individual agents and the cost functions, and rendering the optimal control problem partially invariant by a Lie group of symmetries. Reduced necessary conditions for the existence of normal extremals are obtained using techniques of variational calculus on manifolds. As an application, we study an optimal control problem for multiple unicycles.
---
PDF链接:
https://arxiv.org/pdf/1802.01224
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群