全部版块 我的主页
论坛 经济学人 二区 外文文献专区
561 0
2022-03-06
摘要翻译:
延迟与和(DAS)波束形成器是光声成像(PAI)中最常用的波束形成算法,具有实现简单、成像实时等优点。然而,它提供了较差的分辨率和高水平的旁瓣。提出了一种新的延迟乘和算法(DMAS)。与DAS相比,使用DMAS可以得到更低的旁瓣,但是分辨率还不能令人满意。提出了一种基于最小方差(MV)自适应波束形成与DMAS相结合的新型波束形成器,即基于最小方差的DMAS(MVB-DMAS)。结果表明,对DMAS方程进行扩展,得到了一些包含DAS方程的项。在DMAS代数展开中,提出用MV自适应波束形成器代替现有的DAS。将MVB-DMAS与DAS、DMAS和MV进行了数值比较,并提出了信噪比(SNR)指标。结果表明,MVB-DMAS比DAS、DMAS和MV分别提高了13 dB、3 dB和2 dB的图像质量和信噪比。
---
英文标题:
《Medical Photoacoustic Beamforming Using Minimum Variance-Based Delay
  Multiply and Sum》
---
作者:
Moein Mozaffarzadeh, Ali Mahloojifar, Mahdi Orooji
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Computer Science        计算机科学
二级分类:Information Theory        信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Mathematics        数学
二级分类:Information Theory        信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--

---
英文摘要:
  Delay-and-Sum (DAS) beamformer is the most common beamforming algorithm in Photoacoustic imaging (PAI) due to its simple implementation and real time imaging. However, it provides poor resolution and high levels of sidelobe. A new algorithm named Delay-Multiply-and-Sum (DMAS) was introduced. Using DMAS leads to lower levels of sidelobe compared to DAS, but resolution is not satisfying yet. In this paper, a novel beamformer is introduced based on the combination of Minimum Variance (MV) adaptive beamforming and DMAS, so-called Minimum Variance-Based DMAS (MVB-DMAS). It is shown that expanding the DMAS equation leads to some terms which contain a DAS equation. It is proposed to use MV adaptive beamformer instead of existing DAS inside the DMAS algebra expansion. MVB-DMAS is evaluated numerically compared to DAS, DMAS and MV and Signal-to-noise ratio (SNR) metric is presented. It is shown that MVB-DMAS leads to higher image quality and SNR for about 13 dB, 3 dB and 2 dB in comparison with DAS, DMAS and MV, respectively.
---
PDF链接:
https://arxiv.org/pdf/1801.06421
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群