全部版块 我的主页
论坛 经济学人 二区 外文文献专区
327 0
2022-03-06
摘要翻译:
我们研究了Kuramoto振子在被称为模体的小部分网络中的相位同步。本文首次研究了无标度网络的系统动力学,证明了非平凡临界点的存在性。我们计算了网络模体的同步概率,发现同步适应度与模体的互连性和结构复杂性有很好的相关性。讨论了目前关于生物和其他系统中网络进化的辩论的可能含义。
---
英文标题:
《Fitness for Synchronization of Network Motifs》
---
作者:
Yamir Moreno, Miguel Vazquez-Prada, Amalio F. Pacheco
---
最新提交年份:
2004
---
分类信息:

一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics        物理学
二级分类:Other Condensed Matter        其他凝聚态物质
分类描述:Work in condensed matter that does not fit into the other cond-mat classifications
在不适合其他cond-mat分类的凝聚态物质中工作
--
一级分类:Quantitative Biology        数量生物学
二级分类:Molecular Networks        分子网络
分类描述:Gene regulation, signal transduction, proteomics, metabolomics, gene and enzymatic networks
基因调控、信号转导、蛋白质组学、代谢组学、基因和酶网络
--
一级分类:Quantitative Biology        数量生物学
二级分类:Other Quantitative Biology        其他定量生物学
分类描述:Work in quantitative biology that does not fit into the other q-bio classifications
不适合其他q-bio分类的定量生物学工作
--

---
英文摘要:
  We study the phase synchronization of Kuramoto's oscillators in small parts of networks known as motifs. We first report on the system dynamics for the case of a scale-free network and show the existence of a non-trivial critical point. We compute the probability that network motifs synchronize, and find that the fitness for synchronization correlates well with motif's interconnectedness and structural complexity. Possible implications for present debates about network evolution in biological and other systems are discussed.
---
PDF链接:
https://arxiv.org/pdf/cond-mat/0404054
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群