摘要翻译:
利用Raynaud和Gruson的blow-up结果,我们得到了淹没态射和淹没态射的新结果。我们证明了普遍的隐式态射,特别是普遍的开式态射,是纤维态射范畴有效下降的态射。我们的结果推广和补充了Grothendieck、Picavet和Voevodsky关于淹没态射的研究。应用包括几何商的普遍性和在许多情况下消除诺以太假设。
---
英文标题:
《Submersions and effective descent of etale morphisms》
---
作者:
David Rydh
---
最新提交年份:
2010
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
---
英文摘要:
Using the flatification by blow-up result of Raynaud and Gruson, we obtain new results for submersive and subtrusive morphisms. We show that universally subtrusive morphisms, and in particular universally open morphisms, are morphisms of effective descent for the fibered category of etale morphisms. Our results extend and supplement previous treatments on submersive morphisms by Grothendieck, Picavet and Voevodsky. Applications include the universality of geometric quotients and the elimination of noetherian hypotheses in many instances.
---
PDF链接:
https://arxiv.org/pdf/0710.2488