摘要翻译:
我们将复仿射Schubert簇上的一类k-向量空间的束与k-Lie代数上的模(对于ch k>0)或与Langlands对偶根基准相关的小量子群上的模(对于ch k=0)联系起来。作为应用,我们给出了几乎所有特征的Lusztig猜想的量子性质和模性质的新证明。此外,我们将几何和表示理论的边与下层矩图上的束联系起来,这使得我们可以在两个方向上推广Lusztig模猜想的已知实例:我们给出了例外特征的一个上界,并在一种情况下验证了所有相关素数的多重性。
---
英文标题:
《Sheaves on affine Schubert varieties, modular representations and
Lusztig's conjecture》
---
作者:
Peter Fiebig
---
最新提交年份:
2010
---
分类信息:
一级分类:Mathematics 数学
二级分类:Representation Theory 表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We relate a certain category of sheaves of k-vector spaces on a complex affine Schubert variety to modules over the k-Lie algebra (for ch k>0) or to modules over the small quantum group (for ch k=0) associated to the Langlands dual root datum. As an application we give a new proof of Lusztig's conjecture on quantum characters and on modular characters for almost all characteristics. Moreover, we relate the geometric and representation theoretic sides to sheaves on the underlying moment graph, which allows us to extend the known instances of Lusztig's modular conjecture in two directions: We give an upper bound on the exceptional characteristics and verify its multiplicity one case for all relevant primes.
---
PDF链接:
https://arxiv.org/pdf/0711.0871