摘要翻译:
我们研究了阶为$d$的平面曲线的Severi变体$v_{d,g}$和几何亏格$g$。对应于每一个这样的变体,有一个G$稳定曲线属的单参数族,我们计算它的数值不变量。在Caporaso和Harris的工作的基础上,我们导出了Hodge丛的次的一个递推公式。对于$d$足够大,这些族在$\bar{M}_g$中诱导移动曲线。我们利用这一点导出了$\bar{M}_g$上有效因子斜率的下界。我们的结果的另一个应用是在$v_{d,g}$上的各种枚举问题。
---
英文标题:
《Linear sections of the Severi variety and moduli of curves》
---
作者:
Maksym Fedorchuk
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
  We study the Severi variety $V_{d,g}$ of plane curves of degree $d$ and geometric genus $g$. Corresponding to every such variety, there is a one-parameter family of genus $g$ stable curves whose numerical invariants we compute. Building on the work of Caporaso and Harris, we derive a recursive formula for the degrees of the Hodge bundle on the families in question. For $d$ large enough, these families induce moving curves in $\bar{M}_g$. We use this to derive lower bounds for the slopes of effective divisors on $\bar{M}_g$. Another application of our results is to various enumerative problems on $V_{d,g}$. 
---
PDF链接:
https://arxiv.org/pdf/0710.1623