摘要翻译:
本文讨论了一种复曲面的去模糊化算法。特别地,我们构造了一个确定Hirzebruch-Jung连分式分解的迭代方法。然后将这些结果应用于至少有一个小权的加权射影平面,即{\mathbb P}(1,m,n)$。本文最后开发了一个计算这种连分式分解的计算机程序。
---
英文标题:
《Desingularizations of some Weighted Projective Planes》
---
作者:
Jeremiah M. Kermes
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In this paper we discuss the desingularization algorithm for a toric surface. In particular, we construct an iterable method of determining the Hirzebruch-Jung continued fraction decomposition. These results are then applied to weighted projective planes with at least one tivial weight, ${\mathbb P}(1,m,n)$. The paper concludes with the development of a computer program that computes this continued fraction decomposition.
---
PDF链接:
https://arxiv.org/pdf/0710.3409