全部版块 我的主页
论坛 经济学人 二区 外文文献专区
283 0
2022-03-06
摘要翻译:
设$P$是完全实域$L$中的一个未分支素数,使得$H^+(L)=1$。我们的主要结果表明,在Hilbert模空间上,通过经典θ级数,可以由具有实乘法的超特殊阿贝尔变体的等生模自然地构造出平行权为2的Hilbert模新形式。这可以看作是对Hilbert模形式的Eichler基问题的几何重新解释。
---
英文标题:
《Superspecial Abelian Varieties and the Eichler Basis Problem for Hilbert
  Modular Forms》
---
作者:
Marc-Hubert Nicole
---
最新提交年份:
2008
---
分类信息:

一级分类:Mathematics        数学
二级分类:Number Theory        数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  Let $p$ be an unramified prime in a totally real field $L$ such that $h^+(L)=1$. Our main result shows that Hilbert modular newforms of parallel weight two for $\Gamma_0(p)$ can be constructed naturally, via classical theta series, from modules of isogenies of superspecial abelian varieties with real multiplication on a Hilbert moduli space. This can be viewed as a geometric reinterpretation of the Eichler Basis Problem for Hilbert modular forms.
---
PDF链接:
https://arxiv.org/pdf/0711.0239
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群