全部版块 我的主页
论坛 经济学人 二区 外文文献专区
284 0
2022-03-06
摘要翻译:
利用滤波器组多载波系统传输复值码元一直是一个问题,这是由于传输码元之间在时域和频域上的自干扰(所谓的本征干扰)。本文提出了一种新的低复杂度无干扰滤波器组QAM调制多载波系统(FBMC/QAM)。该方法基于原型滤波器的反演,完全消除了接收端的固有干扰,并允许使用复值信令。从均方误差(MSE)的角度分析比较了FBMC/QAM系统中存在和不存在该系统时的干扰项。理论和仿真结果表明,该方法消除了本征干扰,提高了输出信干噪比(SINR),但对多径信道引起的残余干扰略有增强。分析了该系统的复杂性,并在异步多业务场景下进行了性能评估。结果表明,该滤波器反卷积FBMC/QAM系统的性能优于传统的OFDM系统。
---
英文标题:
《Complex-Valued Symbol Transmissions in Filter Bank Multicarrier Systems
  using Filter Deconvolution》
---
作者:
Adnan Zafar, Mahmoud Abdullahi, Lei Zhang, Sohail Taheri, Pei Xiao and
  Muhammad Ali Imran
---
最新提交年份:
2017
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--

---
英文摘要:
  Transmission of complex-valued symbols using filter bank multicarrier systems has been an issue due to the self-interference between the transmitted symbols both in the time and frequency domain (so-called intrinsic interference). In this paper, we propose a novel low-complexity interference-free filter bank multicarrier system with QAM modulation (FBMC/QAM) using filter deconvolution. The proposed method is based on inversion of the prototype filters which completely removes the intrinsic interference at the receiver and allows the use of complex-valued signaling. The interference terms in FBMC/QAM with and without the proposed system are analyzed and compared in terms of mean square error (MSE). It is shown with theoretical and simulation results that the proposed method cancels the intrinsic interference and improves the output signal to interference plus noise ratio (SINR) at the expense of slight enhancement of residual interferences caused by multipath channel. The complexity of the proposed system is also analyzed along with performance evaluation in an asynchronous multiservice scenario. It is shown that the proposed FBMC/QAM system with filter deconvolution outperforms the conventional OFDM system.
---
PDF链接:
https://arxiv.org/pdf/1711.0885
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群