摘要翻译:
本文的目的是提出一个可扩展的生命系统理论,利用生物数学和生物计算的方法,适当地处理具有多时相多智能体的自组织、自参照和预期系统。我们的第一步是为人工和自然生命系统中涌现和演化的动态多级有机复合物及其维持过程的建模提供基础。主要应用于生命科学、医学、生态学和天体生物学,以及机器人学、工业自动化和人机界面。自2011年以来,来自多个学科的100多名科学家一直在探索一套完整的生命理论的理论框架,称为整体生物病理学。这一努力确定了需要一个强有力的核心模型的生物体作为动态的整体,使用先进的和充分可计算的数学。本文针对该核心所做的工作结合了主动自组织网络的情境和上下文感知多值计算逻辑游荡逻辑智能(WLI)和多尺度动态范畴理论记忆进化系统(MES)的优点,从而形成了WLIMES。这是通过正式的增强现实语言提供给建模者的,作为对多层次生活系统进行实际建模和仿真的第一步。初步工作集中在设计和实现这种可视化语言和演算(VLC)及其图形用户界面。这些结果将被整合到理论生物学和(个性化)医学的当前方法论和实践中,以深化和增强对生命的整体理解。
---
英文标题:
《Adapting a Formal Model Theory to Applications in Augmented Personalized
Medicine》
---
作者:
Plamen L. Simeonov and Andr\'ee C. Ehresmann
---
最新提交年份:
2017
---
分类信息:
一级分类:Quantitative Biology 数量生物学
二级分类:Other Quantitative Biology 其他定量生物学
分类描述:Work in quantitative biology that does not fit into the other q-bio classifications
不适合其他q-bio分类的定量生物学工作
--
一级分类:Computer Science 计算机科学
二级分类:Logic in Computer Science 计算机科学中的逻辑
分类描述:Covers all aspects of logic in computer science, including finite model theory, logics of programs, modal logic, and program verification. Programming language semantics should have Programming Languages as the primary subject area. Roughly includes material in ACM Subject Classes D.2.4, F.3.1, F.4.0, F.4.1, and F.4.2; some material in F.4.3 (formal languages) may also be appropriate here, although Computational Complexity is typically the more appropriate subject area.
涵盖计算机科学中逻辑的所有方面,包括有限模型理论,程序逻辑,模态逻辑和程序验证。程序设计语言语义学应该把程序设计语言作为主要的学科领域。大致包括ACM学科类D.2.4、F.3.1、F.4.0、F.4.1和F.4.2中的材料;F.4.3(形式语言)中的一些材料在这里也可能是合适的,尽管计算复杂性通常是更合适的主题领域。
--
---
英文摘要:
The goal of this paper is to advance an extensible theory of living systems using an approach to biomathematics and biocomputation that suitably addresses self-organized, self-referential and anticipatory systems with multi-temporal multi-agents. Our first step is to provide foundations for modelling of emergent and evolving dynamic multi-level organic complexes and their sustentative processes in artificial and natural life systems. Main applications are in life sciences, medicine, ecology and astrobiology, as well as robotics, industrial automation and man-machine interface. Since 2011 over 100 scientists from a number of disciplines have been exploring a substantial set of theoretical frameworks for a comprehensive theory of life known as Integral Biomathics. That effort identified the need for a robust core model of organisms as dynamic wholes, using advanced and adequately computable mathematics. The work described here for that core combines the advantages of a situation and context aware multivalent computational logic for active self-organizing networks, Wandering Logic Intelligence (WLI), and a multi-scale dynamic category theory, Memory Evolutive Systems (MES), hence WLIMES. This is presented to the modeller via a formal augmented reality language as a first step towards practical modelling and simulation of multi-level living systems. Initial work focuses on the design and implementation of this visual language and calculus (VLC) and its graphical user interface. The results will be integrated within the current methodology and practices of theoretical biology and (personalized) medicine to deepen and to enhance the holistic understanding of life.
---
PDF链接:
https://arxiv.org/pdf/1710.03571