全部版块 我的主页
论坛 经济学人 二区 外文文献专区
380 0
2022-03-06
摘要翻译:
本文利用复圈几何研究了Grassmannian(Gr_{kn})_{\geq0}的全非负部分的拓扑。这是一个单元复合体,它的单元Delta_G可以用平面二分图G的组合来参数化,每个单元Delta_G都对应一个多面体P(G)。多边形P(G)类似于著名的Birkhoff多边形,我们用G的匹配和匹配的并来描述它们的面格。我们还证明了多边形P(G)与拟阵多边形之间的密切联系。然后我们利用P(G)的数据定义了一个相关的toric变量X_g。利用我们的技术证明了(Gr_{kn})_{\geq0}的胞分解是CW复形,进而证明了(Gr_{kn})_{\geq0}的每个胞闭包的欧拉特征为1。
---
英文标题:
《Matching polytopes, toric geometry, and the non-negative part of the
  Grassmannian》
---
作者:
Alexander Postnikov, David Speyer, Lauren Williams
---
最新提交年份:
2008
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics        数学
二级分类:Combinatorics        组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--

---
英文摘要:
  In this paper we use toric geometry to investigate the topology of the totally non-negative part of the Grassmannian (Gr_{kn})_{\geq 0}. This is a cell complex whose cells Delta_G can be parameterized in terms of the combinatorics of plane-bipartite graphs G. To each cell Delta_G we associate a certain polytope P(G). The polytopes P(G) are analogous to the well-known Birkhoff polytopes, and we describe their face lattices in terms of matchings and unions of matchings of G. We also demonstrate a close connection between the polytopes P(G) and matroid polytopes. We then use the data of P(G) to define an associated toric variety X_G. We use our technology to prove that the cell decomposition of (Gr_{kn})_{\geq 0} is a CW complex, and furthermore, that the Euler characteristic of the closure of each cell of (Gr_{kn})_{\geq 0} is 1.
---
PDF链接:
https://arxiv.org/pdf/0706.2501
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群